Transit-timing variations of exoplanet Kepler-410 Ab

Mgr. Pavol Gajdoš

28.3.2019

Transit-timing variations of exoplanet Kepler-410 Ab

Contents

- Introduction
- **2** Detection of exoplanets
- **3** Resonances
- **4** Numerical simulations
- **5** System Kepler-410

6 Conclusions

Introduction

- exoplanets one of the main topics of current astrophysical research
- multiple projects focused on the search of exoplanets (Kepler, TESS, etc.)
- 3925 confirmed exoplanets, 657 planetary systems
- wide scope for further research
- $\bullet\,$ study dynamics and stability of the planetary systems $\rightarrow\,$ their formation and evolution
- resonant interaction a key factor of the orbital stability

Methods for searching for exoplanets

- transits
 - the simplest and most successful method (mission Kepler)
 - watching for the regular drops of the brightness of the parent star
- radial velocities (RV)
 - the shift of the spectral lines as the result of the Doppler effect
 - determination of the mass of the planet (combination with transits)
- transit-timing variations (TTV)
 - gravitational interactions of the another body in the system

Mean-motion resonances

- small but regular perturbation has a significant influence on the behaviour of the studied body
- mean-motion resonance (MMR) if the ratio (at least approximately) works

$$\frac{P_1}{P_2} = \frac{n_2}{n_1} = \frac{p}{p-q}$$

- the most common type of resonance planets, moons, asteroids, etc.
- bodies are regularly in the same configuration
- significantly affects the stability of the system stabilize or destabilize orbit

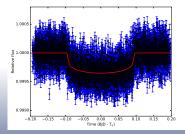
Effect of resonances on the TTV

- resonances the main source of the TTV in the known exoplanetary systems
- period of the TTV depends on the distance from the exact MMR

$$P_{
m TTV} = rac{1}{|p/P_1 - (p-q)/P_2|}$$

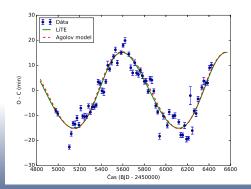
• amplitude of the TTV of the 1st planet caused by the 2nd planet depends mainly on the mass of the 2nd planet and the order of the resonance

$$\delta t_1 \propto P_1 \frac{m_2}{M_\star} \frac{a_1}{a_2} f(a_1, a_2, P_1, P_2)$$


- determination of the masses of two transiting exoplanets in the resonance (both with TTV)
- if only one planet \Rightarrow unknown order of the resonance \Rightarrow we cannot exactly tell what planet causes TTV

Numerical simulations

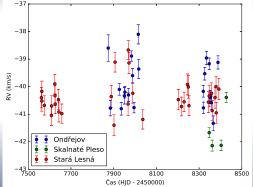
- solving the *n*-body problem no analytical solution
- numerical integration of the orbits e.g. using package Mercury6 or Swift
- wide opportunities in celestial mechanics
- commonly used also in the study of exoplanetary systems:
 - simulation of TTV
 - resonant interaction between planets
 - long-term stability of the planetary systems


Exoplanetary system Kepler-410

- brightness V 9.5 mag
- distance 148.16 \pm 0.49 pc (GAIA DR2)
- Kepler-410 A 1.352 $R_{\odot},$ 1.214 $M_{\odot},$ spectral type F6IV
- Kepler-410 B (Adams *et al.*, 2012) − distance 1.63" ⇒ 250 AU; a red dwarf (4850 K)
- transiting exoplanet Kepler-410 Ab
 - discovered in 2013 (Van Eylen *et al.*, 2014)
 - size of Neptune 2.647 R_\oplus
 - orbital period 17.8336313 d
 - semi-major axis 0.1426 AU

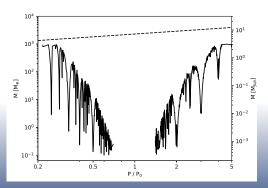
ΤΤ

- amplitude \approx 15 min., period 970 975 days
- studied also in a paper Gajdoš et al. (2017) using two analytical models:
- Light-Time effect (Irwin, 1952) $M_3 \approx 2.1 \ {
 m M}_{\odot}$
- (2) model by Agol *et al.* (2005) - $M_3 \approx 0.9 \text{ M}_{\odot}$
- ⇒ another body with stellar mass on the orbit with orbital period 970 days

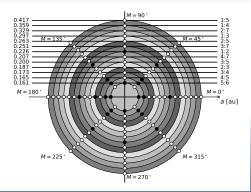


RV measurements

- $\, \bullet \,$ expected variation with an amplitude 25 30 km/s and a period \sim 970 days
- measurements from three observatories (SR+ČR) during three observing seasons (2016 – 2018)


RV measurements

- $\circ\,$ expected variation with an amplitude 25 30 km/s and a period \sim 970 days
- measurements from three observatories (SR+ČR) during three observing seasons (2016 – 2018)
- from the observations amplitude $\lesssim 600-800~m/s$
- the stellar originator of TTV could be excluded
- the existence of close brown dwarf or massive hot jupiter is also unlikely


Resonant interaction

- $\bullet\,$ another interpretation of observed TTV $\to\,$ resonances between exoplanet Kepler-410 Ab and other (unknown) planet
- analysis using numerical simulations
- determination of the mass of the planet for different orbital periods
- in MMR small planets with a mass 0.1 3 M_\oplus
- many possible explanations
 different couples of M, P
- RV measurements no constraint on a range of possible planets

Stability of the resonance

- determine the most probable explanation of TTV caused by the resonances
- studying long-term stability (5000 years) of the significant MMR
- interior resonances are less stable
- most of exterior resonances are stable
- resonance 1:2 is unstable

Conclusions

- observed variations of the times of transit of exoplanet Kepler-410 Ab
- RV measurements excluded existence of another close star ⇒ rejection of the previous explanation of TTV (Gajdoš *et al.*, 2017)
- possible origin of TTV small planet close to the MMR
- determine the most probable option stability of the resonances + statistical distribution of resonances among the known systems (Wang & Ji, 2014)
- explanation of TTV a planet with a mass of 1.5 $M_{\rm Mars}$ close to the exterior resonance 2:3 (period 26.5 days)
- hardly detected by current instruments
- results already published in a paper Gajdoš et al. (2019)

Thank you for your attention!

Adams, E. R. et al. 2012. *AJ*, **144**, 42. Agol, E. et al. 2005. *MNRAS*, **359**, 567. Gajdoš, P. et al. 2017. *MNRAS*, **469**, 2907. Gajdoš, P. et al. 2019. *MNRAS*, **484**, 4352. Irwin, J. B. 1952. *ApJ*, **116**, 211. Van Eylen, V. et al. 2014. *ApJ*, **782**, 14. Wang, S., Ji, J. 2014. *ApJ*, **795**, 85.